Text Recognition in Videos Using a Recurrent Connectionist Approach

نویسندگان

  • Khaoula Elagouni
  • Christophe Garcia
  • Franck Mamalet
  • Pascale Sébillot
چکیده

Most OCR (Optical Character Recognition) systems developed to recognize texts embedded in multimedia documents segment the text into characters before recognizing them. In this paper, we propose a novel approach able to avoid any explicit character segmentation. Using a multi-scale scanning scheme, texts extracted from videos are first represented by sequences of learnt features. Obtained representations are then used to feed a connectionist recurrent model specifically designed to take into account dependencies between successive learnt features and to recognize texts. The proposed video OCR evaluated on a database of TV news videos achieves very high recognition rates. Experiments also demonstrate that, for our recognition task, learnt feature representations perform better than hand-crafted features.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Embedded Arabic text detection and recognition in videos. (Détection et reconnaissance de texte Arabe incrusté dans les vidéos)

This thesis focuses on Arabic embedded text detection and recognition in videos. Different approaches robust to Arabic text variability (fonts, scales, sizes, etc.) as well as to environmental and acquisition condition challenges (contrasts, degradation, complex background, etc.) are proposed. We introduce different machine learning-based solutions for robust text detection without relying on a...

متن کامل

A Transfer Learning Based Feature Extractor for Polyphonic Sound Event Detection Using Connectionist Temporal Classification

Sound event detection is the task of detecting the type, onset time, and offset time of sound events in audio streams. The mainstream solution is recurrent neural networks (RNNs), which usually predict the probability of each sound event at every time step. Connectionist temporal classification (CTC) has been applied in order to relax the need for exact annotations of onset and offset times; th...

متن کامل

Speech Emotion Recognition Using Scalogram Based Deep Structure

Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...

متن کامل

A Novel Approach to On-Line Handwriting Recognition Based on Bidirectional Long Short-Term Memory Networks

In this paper we introduce a new connectionist approach to on-line handwriting recognition and address in particular the problem of recognizing handwritten whiteboard notes. The approach uses a bidirectional recurrent neural network with long short-term memory blocks. We use a recently introduced objective function, known as Connectionist Temporal Classification (CTC), that directly trains the ...

متن کامل

Sequence to Sequence Learning for Optical Character Recognition

We propose an end-to-end recurrent encoder-decoder based sequence learning approach for printed text Optical Character Recognition (OCR). In contrast to present day existing state-of-art OCR solution [Graves et al. (2006)] which uses CTC output layer, our approach makes minimalistic assumptions on the structure and length of the sequence. We use a two step encoder-decoder approach – (a) A recur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012